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By M. H. Lee Wu

SUMMARY

A partly linearized solution of plastic deformation of a
rotating disk hased on the deformation theory of plasticity and
consldering finite strains is obtained. The stresses and the
strains of thls problem for a given meterial and a given maximum
strain can be obtained merely by a simple multiplication using the
tables presented herein. This method is used to investigate the
general plastic behavior of a rotating disk. An spproximate method
is also given in which the stresses are calculated by using strains
obtained from the lideally plastic materlal and the tensile true
stress~-strain curve of the material.

Numerical exsmples are calculated by the two methods and
agree very well with the exact solution based on deformation the-
ory previously obtained. Calculations are also made for ideally
plastic material and for the power-function approximation for pur-
poses of comparison.

The following conclusions, similaer to those resulting from
the linearized solution of the thin plate with a circular hole, are
obtained for thls problem:

(1) The varistion of a parameter, which is determimed from the
octahedral shear stress-strain curve of the material, can be used
as & general criterion of the applicability of deformation theory.

(2) The ratios of strain along the radius to the maximum value
and the ratios of principal stresses are essentially independent
of the octehedrel shear stress-strain curve of the msterisl, but
the distributions of the stresses, and therefore the rotating
speeds of the disk, depend very mmch on the material.

(3) The results obtained from the ideally plastic material
with the infinitesimal straln concept give good epproximate values
of strains but not of stresses. :
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(¢) The rotating speed of the disk for a given maximum strain
of the disk can be determined directly from the tensile true stress-
strain curve of the material.

(5) Good correlation between the experimentally determined
bursting speed and the calculated value determined directly from
the tensile stress-strain curve of the material is obtained.

(6) If = simple analytical function representing the octa-
hedral shear stress-strain relation is required for anelysis, the
power-law epproximetion can be used.

INTRODUCTION

In the design of & high-speed or a highly stressed machine
member such as a turbine or a compressor rotor, the distributions
of stresses end strains In the strain-hardenling range muist be
known. The problem of a rotating disk for an ideslly plastic
material wes solved by Nadai (reference 1). A solution for ges-
turbine disks considering small plastic strain in the strain-
hardening range is obtained in reference 2 by a trial-and-error
procedure and by using elastic stress and strain distributions as
a first approximation. An experimental investigation for the high-
speed rotating disk is made in reference 3; distributions of plas-
tic strains (logerithmic strains) for different types of disk are
measured. The effect of strength and ductility on the burst char-
acteristics of rotating disks are experimentally investigated in
reference 4. An exact solution based on deformation theory for
plane plastic stress problems with axisl symmetry (including a cir-
cular membrane under pressure, a rotating disk, eand a thin plate
with a circular hole) in the strain-hardening range is obtained
in reference 5; numerical calculations are made for Inconel X and
Timken alloy 16-25-8. A linearized solution of plastic deformation
of a thin plate with a circular hole is given in reference 6. This
linearized solution 1s not only simple and accurate but also offers
a means of investigating the general plastic behavior of that prob-
lem for most meterials.

Extension of this method to the problem having the additional
complication of body forces, such as a rotating disk, is therefore
interesting. (For & circular membrane under pressure, the normal
pressure can be treated in a menner similar to the centrifugal
force of a rotating disk.) The partly linearized solution obtained
at the NACA Lewis laboratory and presented herein is also used to
investigate general plastic behavior for this problem.
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SYMBOLS

The following symbols are used in this report:

A,B,C, coefficients of nonlinear differential equations; functions
D,E,F of @, v, and r/k

b original oubter radius of rotating disk
H,J,L. ‘trigonometric functions of «-

h instantaneous thickness of disk

hi nit initial thickness of disk

X strain-hardening constant

Kl arbitrary loading constant

k constant, in dimension of length

m parameter relating to strain hardening

n parameter relating to criterion of applicability of deforma-
tion theory

r radial coordinate of umdeformed disk

u radisl displacement

Z axial coordinate

a parameter indicating ratio of principal stresses

T octahedral shear strain

€ logarithmic strain (natural strain), logarithm of instantaneous
length divided by initlal length of element

2] angular coordinate ‘

o] mass per unit volume

o normel true stress, force per unit instantaneous area

T octehedral shear stress

w angular velocity
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Subscripts:

b at outer radius b
o gt center of disk

NACA TN 2367

r,0,2z Dprincipal directions; radial, ta.ngentiaq., and axial directions

BASIC EQUATIONS

A disk having an original outer radlus Db and an Initial thick-
ness hy,i4 rotabting about its exls with an angular velocity o
is shown in Pigure 1(a). A small element defined by A9 and
s (r+u) in the deformed state 1s given
in figure 1(b). In the undeformed state, this element is located
at r eand defined by A9 and Ar. The instantaneous thickness h
of the element and the stresses acting on the element are also

A(r+u) taken at the radiu

shown in the figure.

The relations of stresses and strains based on the deformation
theory for plene plastic stress in the cylindrical coordinates are

(references 7 and 8):

€r t€g +€,; =0
T=T(y)

1

T = —3‘\@-(01.2 - 0. Og + 662)-2_

1

Y = 2\/§(€r2 +€,€ 4 +eez)§
erz%}%(cr '%09)
€e=°]§£(°e -J; r)

-35[ 2]

(1)
(2)

(3a)
(3b)
(4=)

(4p)

(4c)

The constants 1/2 and 1/3 in equations (4) are determined from the
condition defined by equation (1) and one of the equations (3).

Only five of these equations are therefore independent.

g212
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The Finite-strain concept (references 8 to 10), which con-
siders the instantaneous dimensions of the element, is used because
large deformation in the strain-hardening range is considered.

The stress is then equal to the force divided by the instantaneous
areg, and the strain to the logarithm of the instantaneous length
divided by the initial length of the element (references 8 to 10).
It 1s mentioned in reference 5 that as long as the deformstion the-
ory is epplicable, the logarithmic strein can also be used. The
strain-displacement relations for this problem are then as follows:

d{r+4u)
€. = logg = (5a)
€g = logg Z-? (5b)
€, = log, .h - (5¢)

From the condition of equilibrium in the radisl direction of
the small element in figure 1(b), the following equation of equi-
1librium is obtained (reference 5):

d(o,h)

da(r+u)

= (0g - 0p) b - p (ar)hg, T2 (g)

(r+u) r d(r+u)

Nine equations defining this problem are equations (1), (2), (3b),
(42), (4p), (5a), (5b), (5c), and (B8), which involve nine
unknowns: Op, Og; €,,€g, €,5, T, T, h, and u. Equetions (1) and
(5) can be used to eliminate €,, u, and h, resulting in a com-
patibility equation. The equations defining this problem are then
reduced to six equations with six unknowns: 0., Og, €., €5, T,

and T. Two of the four unknowns, 0., Og, €., and €g, may be

eliminated by using equations (4a) and (4b) or (3b). The quan-
tity T 1s a known function of 7y, vhich is experimentally deter-
mined from a simple tensile test. The problem is then reduced to
one involving three unknowns. Obtaining the solution of the
resulting equations 1s not, however, a simple matter. This diffi-
culty can be avoided by using the following transformstion (refer-
ences 1 and 5 to 7) because the yielding surface of plane plastic
stress based on the deformation theory is an ellipse:




6 NACA TN 2367

= T 3
cre+0r 3N2 sin «

Og - Op = 6 Tcos a

Rewriting the principal stresses as functions of T and o glves

dr='\’%T(t\/3_sinc,-cos a)
09=4/2— T('\/s_sincr,+cos a)

where T, which is a function of Y, varies with r and also with
loed. With equations (7) substituted into equations (4a) and (4b),
the principal stralns can be expressed as functions of y &and «
ag follows:

(7)

Y _ (sin o -Af3 cos a)

T oaf2

€g = Y (sin o +4/3 cos a)

22

In these equations, the parameter o is closely related to the
ratio of principal stresses, inasmich as

m
Il

(8)

)

_’\/gsincx,-cosor,
o '\Es_sincx,+cosu,

quq

and varies almost linearly with <« for the range of a encountered
in the present problem, which 1s the same range as in the thin
plate with a circular hole as shown in figure 2 of reference 6.

By using the transformation, the equations for this problem are
reduced to the following two nonlinear differential equations,

which are to be solved with an experimentally determined func-

tion 7(v):

A(r d; +B(£) & . ¢

K d(k) k

2125
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or
r) _do CE - FB
k) ()  AE - DB
)
(9)
r\ dr _ FA - CD
k a _1_'_) " EA - BD
&
where -
Y ¢os a \
A= (l\/gcos o + sin a) - (,\/gsina,- cos @) _'\/?-
B = (I\lgsina,-cosa,) ‘%%_'_f_sgg___a)%
T_ 55
(— 5 ¥ cos a,) 2 ﬁsm <@
C =2 (cos a) e _Ep(mk)zl E)
3 T \k (9a)
D=(/\/§sinc1.-cosa.)v
E = - (af3 cos ct.+sina,)’
-'\P- cos a
5 T
F=2A2 |1 -¢ /
£(r,a)
Using equations (9a) and expanding the terms of e into a
series result in
2 )
var 31y To\/r
CE - BF = - 2HL - 2Af3 HJ(.—T- T -a\/g T vo)fl(a,r) +LK1(7)(E) £o(a,r)
(sb)

AF - CD

{8}12 - 24/3 HL EL - fl(or.,“r)] + JKl(ITQ) (%)2 fg(a,r)} T
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where
- %(cosa.)‘r
1
fl(air) = 1-e
= (cos a)y
=1 - A2 1 2 2
1 22(cosc:r.)*r+4(cos a) v . ..
Vr-ﬁ-sina,
£a(air) = e
=] +|—=sina} v + lsinor,z‘rz+--—];—sin Y3+---
Nz A 6 \Wz
H = CO8 G
Jd. ='\ISsina,—cosa.
2
Ky = \/_E— plak)®
3 T
)
L ='\/3cosa+sina,

LINEARTZATION OF EQUATIONS

In eaquations (9b), the variable T occurs not only in the
combination of :—? %r: as in the case of a thin plate with a circu-
lar hole (reference 8), but also in the loading term. As proposed

T
in reference 6, the term ¥- %F can be replaced by m, vwhich is
equal to the slope of a straight line approximating the T(y) curve
on the logarithmic plot within the range vf Y encountered along
the radius of the disk, b to Yo Thus m is a function of Yoi

in other words, the value of m for one material is different for
different loads. The special case where a straight line is used *to
approximete the whole strain-hardening range of the T(vy) curve
of a given material on the logarithmic plot, so that m is con-
stant through the strain-hardening range, is the well-known power-
law epproximation. As in the case of & thin plate with a circuler

2125
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hole, the power-ia:xf'h“bproximatioﬁ gives very good epproximate
results for this problem, as will be shown in the section "Calcu-

lations, Results, and Discussion.” The term ‘_—ﬁ-%\:— can thus be

replaced by m without eppreciable error.

Furthermore , the term l\/% %Q_—r—) in equations (9b) can be
)

replaced by a constant C,, which is determined in a manner simi-
lar to that in the case of a thin plate with a circular hole (ref-

erence 6), as will be described. The terms (L at_ pilxr T,
v dr 237 To
in equations (9b) then become (m - Cyv,).

The general information concerning the effect of the
T(y) curve of the material on the solution of this problem can be
obtained only if the guantity T /T, in the loading term can pos-
sibly be expressed as a function of (m - Civ,). For any part of

the T(y) curve that does not deviate greatly from a straight
line in the strain-hardening range within the value of ¥ con-
sidered, Yo to Yp, the following equation can be written with

sufficient accuracy:

T=T, - (v - Y)(%T - To[ - ( - %)% (%)a‘] (10)

where (g:r_) is the average slope of T{vy) from Y. to T
&/ av o

and (v, T,) is a known point on the T(r) curve. The quan-

Y a ’
tity ,—rﬁ (d—:) does not equal (m - Cyv,) but has a certain
(o] av

relation to it. Results obtalned in reference 5 show that the val-
ues of o and *r/‘ro are not very sensitive to the 'r(r) curve

of the material. If only a linear relation beltween s (dT)

&Y/ av

and (m - Cqr,) 1s retained, equation (10) becomes

%:1-<-%)c2(m-clro) ' (108)
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An gpproximete value of Cl = 0.5, vhich is equal to the mean value

of \I:;Z %‘_— FY- along the radius, can be used in equation (10a). The
values of Y., Tp/Yor 8nd m are known for any point (Yos To)e
By using the values of T/T = T /T, +taken from the true octahed-
ral shear stress-strain curves of seversl materials and using eque-~
tion (10a) amd v/ry, = ¥ /v, the constent C, 1is then found to
be

Cp =2

A zero value of Co is used for the case of negative (m - Clro) P

because there is no negative slope on the true stress-strain curve
of any material. Thus:

Tl(; =1-2 (1 - %) (m - Cyr,) (10b)

It may be noted that this relation is very approximate and is only
used to determine the variations of o and ‘r/‘ro along the radius,

vhich are not sensitive to the T(y) curve of the material. For
the stress and rotating speed, which are dependent on the

T(r) curve, this epproximate relation cennot be used. The
stresses are determined from the values of o and T/T obtained
by the partly linearized solution and the true octa.hedral shear
stress-strain curve of the material obtalned from the tensile test.
The rotating speed is determined from the distributions of tangen-
tial stress and strain.

Substituting equation (10b) into equations (9b) and the result-

ing equation into equations (9), replacing L g_; 5 % FY—
o
by (m - Cy7,), and neglecting the small terms (as in reference 6),

the following equations are obtained:

2125
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nE )
o =2_H_l+—£ (m-Cq 14 ——-—(k) [l— 2(1 —Y—) (m—ClTO)]
w - e @) e o] @)
-1
) b BT e
d(i:) |E|_+ Jd (m-Cl TO)](k
Y
Let
n=m-~-Cy Ty (12)

In equation (12), once the value of Yo is chosen, m can be
determined from the T(y) curve of the material; Cy is a con-

stant and n 1s therefore a constant determined from the
T7(v) curve of the material. Substituting equation (12) into equa-
tions (11) gives

1'+q/— dn- -15 -2 (} - %2)%]—1(5)2
L@

), b3k Tele

N 12
R MR E
= )
In equations (13), all the terms are functions of a, T/r,, and

r/k except K;, which is an arbitrary loading constent, and n,
which 1s also a constant during the calculation. The values of o

\

do _ 28
L

a(f)

} (13)
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and T/r, cen be obtained along r/k until o« reaches the value
that satisfies the outer boundary condition (o = zté) Because r

at the oubter boundary is equal to b, the constant k can be
determined. (For detalls, see reference 5.) The variations of «
and Y/r, with r/b for different values of n can then be cal-

culated. Compere the values of o« end v/y, along r/b obtained

from equations (13) for several values of n with the values of «
and T]Yo elong r/'b obtained in reference 5. (The values of n

for these last cases are calculated from equation (12) with the
approximate value Cy = 0.5.). The variations of a and v/yv,

with r/b having the same n values obtained from equations (13)
and from reference 5 are quite close; therefore Cl = 0.5 can be

used and equation (12) becomes

n=m-0.57, (12a)

The relations of « and /v, with rfo for several values of n

are given in both tabular and curve form to Ffacilitate solution of
this problem for any material under any maximm strain. This
method of determining the distributions of o and ‘r/ro slong /b

will be referred to as the "partly linearized solution.™

PRINCIPAL STRESSES AND STRATNS

APter the variations of o and Y/yr, with r/b are obtained

by the partly linearized solution, the principal stresses and
strains can be obtained from equations (7) and (8) together with
the acbtual 7T and 7y relation of a given material. The equations
show that €.fr, egfr, 0./, and o0g/T are functions of o only;

they can be calculated for different values of o and given in
tabular form to facilitate solution of any given case. Eguea-~
tions (7) and (8) can be written as

o, /7 ='\E (Af3 sin @ - cos «)
(72)
oo/T =\]§ (Af3 sin a + cos a)

TARS
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€I./r = 2‘1-/5 (sin @ -\Ecos )

1

€g/r 2;\/5'

The values of principal stresses and strains can then be obtained
by simple multiplication.

(82)
(sin « +'\jg cos a)

It is usually interesting to know the ratios of maximim and
minimm tangential stress and strain, because the rotating speed
of the disk is mainly determined by the tangential stress and
strain along the radius. The maximm tangential stress and strain
occur at the center of the disk; at r = 0,

7T
U..o—-é'

The minimum tengential stress and strain occur at the rim of the
disk; at r = b,

0. =0
o
% =
From equations (7), the ratio of maximum to minimum tangential
stress is
Tt Py
(0'9)0 Tol '\[3_ sin z + cos —2-) T,
g = 7 Ty o T
( G)b T-b(r\/gsing+cos -6—) b

From equations (8), the ratio of maximm to minimum tangential
strain is

T 1t
€ = i
( 9)0 To(sin 5 + N3 cos 2) To
< = =
9) 2y
( b ‘r:b(sin -—g +AJl3 cos —2) ®

13
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IDEATLY PLASTIC AND APPROXIMATE SOLUTION

For the case of n = 0, equations (13) become

K @
:é) - (%) = Eé) 3 (132)
£ e - 20]E
dé.) < iﬁ) E : o)

Equations (13a) and (13b) can be integrated numerically; these equa-
tions are mmuch simpler than those for the cases of n 75 0. For
ideally plastic material with the infinitesimal strain concept,
Yo is infinitesime} and m = O; the constant n 1is then equal

to zero; this case is a special one of n = 0. For this case,
Nadei (reference 1) obtained a similar relation between o and
r/b as equation (13a).

Equations (132) and (13b) cen also be used to determine
spproximately the variastions of a and Y/y, with r/b for a

material with n ;4 0. An gpproximate method of solution is there-
fore proposed. The procedure of the spproximate solution is as
follows: Use the variations of o end yv/y, with r/b for

n = 0 (or for ideally plastic material with infinitesimal strain)
as the approximete solution of the veriations of a and *r/‘ro

with r/b. The principal strains ¢5 and €. can be calculated
from the spproximate relations of «, T/‘ro , and r/b because the

strains are functions of « and Y only. The stresses, which
are functions of o and T, can be calculated from equations (7a)
by using the tensile true T(y) curve of the material and the
relations of ‘a, Y/vr,, and r/b determined for n = O.

DETERMINATION OF ROTATING SPEED OF DISK

The rotating-speed function p(a)'b)z can be determined by con-
sidering a circular sector as shown in Pfigure 1(c). The radial
component of force acting on the sector due to g 1s equel to

2125
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b

AP d(r+u
- Zceh sin -2—' ar

0

) ar

The centrifugal force on the same sector is equal to
b

phypit T(88) of (r+u) ar
0]

From the condition of equilibrium of the sector in the radial
direction, the following equation is obtained:

b
d(r+u) 3 2
5 ogh “a dr —J; hy q¢ PO (r+u)r dr

or
1

-€
e T
gge d(‘.l;)

L&

The value of p(cnb)2 is then determined only by the tangential
stress and strain. Accurate values of p(wb)z can be obtained by
substituting into equation (15) the tengential stress and strain,
0g and €g, calculated from the linearized solution.

o(ab)” =

(15)

APPROXIMATE VALUE OF ROTATING SPEED OF DISK DETERMINED
DIRECTLY FROM TENSILE STRESS-STRAIN CURVE OF MATERTIAT

If only the approximate velue of the rotating-speed func-

tion p(ab)% is required, equation (15) can be made even simpler.
Consider first the denomina‘bog because it is a function of %

and r/b only. Expending e ® into a series , the denominator
becones

15
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1

Q0 b e e e

where Yo is a constant and can be taken out of the integral sign.
Thus the denominstor of equation (15) becomes

\[ﬂee( _)=—+G1T0+G2702+"' (162)

where Gy Gp, and so forth are integrals, which are functions of a,
Y/‘ro , and /b only. The integrals are given in table I.

The integrals can be calculated using the values of o and
T/v, along r/b obtained from the approximate solution. The var-

iations of « and Y/y, with r/b are independent of material
according to the approximete solution.

The numerator of equation (15) is & function of oy, €y, and
r/b. The tangential strain €g can be treated in a menner similar
to theat used for the denominator. The tangential stress Og can
be written as (op/T)T, where oy4/T 1s a function of a«, and T
can be written as an approximate function of 7vy; thus

[s (s} m“
gg = (.?)T— (—;—) Kr

vhere m 1s the slope of a straight line approximating the tensile
7(r) curve of the material on the logarithmic plot within the
range of 1Y encountered slong the radius of the disk b to YTos

and K is a constant that can be determined from the actual
T(v) curve within the same range of Y. The integrand of the
numerator thus becomes:

: T
[¢]
-tm 1 — +€
<o n (%) (¥ N "% op) ~(m e 7 *<q)
Uee =Kr0 Cay ;,.—- e =TOT e
O,

.

2125
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Expanding the exponential function of e into a series gives

7o
-(m log, + * ce)
e

T T T
1 0 2 1 0 3
=1~ (m loge ?q-l-ce) +-2—!- (m loge —T—"l‘ce) -ST (m loge ‘_—r—+ Ce) F+ ¢ . .

3
To To,2 n° Yo
=1 - m logy T + 33 (108e';?) Xy (1083‘77) + ...
€ € Y 2 Y. a2
SOy am, B X g 0B T (105, 1) 4L
T Yo T 7o vo2t %y, T
2 2 2 2 2 2
Yo [fo '8 o, fo\ [y To
+ — | = L - —) 1) (Loge —) + . . .
2l \Y \t 2t W/ \ro Y

3 c 3 3
_To_ (_9) I_‘) N
31 \T/ \rq

The values of m and T, remain constant along the radius and can

therefore be taken out of the integral sign; thus the mumerstor of
equation (15) becomes

<o _/r 2 3
Ocree d(.E) = T,(Ig - Iym + Ipm” - Izm + . . .

- Iyry + Ismrg + « & ) (16b)

The integrals Iy, I3, Ip, Iz, Iy, Ig, end so forth are functions
of o, 7/ry, and r/b, and are independent of materiel according

to the approximate solution. These integrals are also given in
table I. Substitubting equations (16a) and (16b) into equation (15)
and neglecting the small terms result in

2 3
p(wb)z I - Ilm + Iom - Izm™ - Iurg + Ismro
= = a7)

1

2
° T T GYo * Gl
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The values of Io, Il’ «ee Gy, and (?r2 are calculated from the

formulas listed in table I by using the a, ‘r/ro, and r/b rela-

tions obtained in the case of n = 0 (the approximate solution).
These values are as follows:

I, [ 2.3031 I, |0.5239
1, | 2.0281 Is | -3514
1.3131 G, | -0537

I .6362 G .0047

Bquetion (17) shows that p(a)'b)z/'r is a function of m eand Y.
The value of To 1is the maximm value of Y in the d:l.sk Once
the velue of Yo is selected, m can be obtained from the tensile

T(y) curve of the material within the range of Y considered
(rp t0 To» Tpfr, 1is approximately equal to 0.15), and 7T, is

the value of T corresponding to vy, taken from the T(y) curve
of the materlal. Equation (17) thus gives the spproximate value
of p(mb) , which is directly determined from the tensile stress-
strain curve of the material. Curves of p(wb) /'r against T,
for different constant values of m can be calculated and plotted.
The value of p((l)b) /TO can then be read directly from the chart
for glven values of m and Yo-

CORRELATION BETWEEN EXPERTMENTAYT, BURSTING SPEED AND
CALCULATED VALUE DETERMINED DIRECTLY FROM
TENSILE STRESS-STRATN CURVE OF MATERTAL

It is interesting to compere the experimentally determined
roteating speed corresponding to a value of 7o at the center of

the disk with the rotating speed predicted from the chart (or equa-
tion (17)) mentioned in the previous section. In order to deter-
mine these speeds experimentally, it would be necessary to measure

To at the centers of the roteting disks during operation. Such

data are unavaileble in the literature to the best knowledge of
the author. If it 1is assumed that fracture in the rotating disk
tekes place at the same value of Yo, @&s the fracture octshedral

shear strain in simple tension, then the data in reference 4,

-
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together with additional data obtalned at the Lewis laboratory for
the work reported in reference 4, are sufficient to allow comparison
between prediction and experiment.

The predicted rotating speed is determined directly from the
tensile octahedral shear stress-strain curve of the same material
as the disk. These curves are calculated from the unpublished
tensile test data for reference 4. The tensile specimens were cut
in the radial direction of the disk of the same material and same
heat treatment. The specimen was 3.00 inches long with & 1.00-inch
gage length. Detalled dimensions of the tensile specimen are
given in figure 4 of reference 4. During the tensile test, the
load-elongation curve was obtained by a recording extensiometer.
The original and breeking diameters of specimens were measured
before and after the experiment. The load at which the. specimen
broke was read from the dial of the tensile machine. From these
deta, a T(vy) curve of the material can be obtained. First, cal-
culate T &and Y by using the values taken from the load-
elongatlion curve up to the meximm load point:

T =R g =42 log, (1+41)
oAz, AR _ Az _ AP (18)
"3 1 3 & ™

3 Ag A 3
where
Al elongation of l-inch gege length

A instantaneous area

A, original area

o~

instantaneous length
1 originel length
P load of tensile specimen

The T and 71 relation cannot be obtained from the tensile
load-elongation curve after the maximum load is reached because
of the nonuniform elongation within the gage length. However, the
T and 1 at fracture can be calculated from the original cross-
sectional area, fracture area, and fracture load:
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‘VLZ— Pfr

Tfr F Afr

Yfr =V2—loge i‘l_

(182)

where the subscript £r means at fracture. Plot the T and 7
relation obtained on e logarithmic scale. Draw a straight line

to approximate the T(y) curve in the range of ‘rfr(‘f To) to Tp.i
for a solid rotating disk, Tb/To is approximetely equal to 0.15
(for the case of n = 0). The slope of this straight line gives

the value of m. Find the value of p(awb) /'r corresponding to m
end Y, = Tp, from the chart. The predicted value of p((Db) when
the disk bursts will be equal to [p(mb) /'r o] Tpr by assuming the
disk breaks vhen the maximm 7Y in the disk (r, at the center

of the disk) reaches the value of Tpp 1in simple tension.

CALCULATIONS, RESULTS, AWD DISCUSSION

In order to observe the degree of the approximation resulting
from the use of a power function representing the octehedrsl shear
stress-strain relation over the complete strain-hardening range
(power-law approximation), & calculation is made with the follow-
ing relation between T and 71:

T(y) = 126,000 y°2°

The - constants are chosen to approximate the ‘l’(‘r) curve of
Inconel X over the whole strain-hardening range, as shown in fig-
ure 2. In figure 3, the veariations of a, v, 0., Og, €p, and €g

vith r/b for the case of v, = 0.30 obtained by the power-law

gpproximation are compared with the values obtained from the actual
T(y) curve of Inconel X; it can be seen that the power-law

approxdmation gives good results. These results indicate thet

replacing the term 1.;- % in equations (9b) by m should introduce
very little error. Also, if a simple analytical function of = ()
is desired for amnalysis, the simple power function representing
the T and 1 7relation of a glven material will give a very good

approximetion.
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The velues of o and T/r, along the redius are calculated

for n=--0.05, 0, 0.1, 0.2, and 0.3 from the partly linearized
equations (13). The variations of o and v/fy, with r/b for

the different values of n are plotted in figure 4; these values
are given in teble IT. The velues of « and Y/y, along r/b

obtained in reference 5 for 16-25-6 and Inconel X are plotted

in figure 5; the values of n for these cases are calculated from
equation (12a) and indicated on these curves. The curves obtained
from the partly linearized solution in figure 4 having the same
range of values of n as those obtained from reference 5 are also
plotted in figure S for comparison. The curves for the same

n value of the two solutions agree very well for most cases. For
simplicity, the solution based on the deformation theory obtained
in reference 5 is designated the exact solution. The simple rela-
tion n=m - 0.5 Yo can then be used as s good approximate cri-

terion to find the variation of o and Y/ro with r/b for dif-

ferent materials and different maximim strains. This generality
leads to a general criterion of applicaebility of the deformation
theory of plasticity to this problem for any material in the strain-
hardening range. The criterion is that if the value of n for a
given material is constant or epproximately constant in the strain-
hardening range, the deformation theory can be applied to this
problem for the material. For the special case of infinitesimal
strain, the condition of n being constant reduces to m being
constant, which is the same condition obtained by Ilyushin
(reference 11).

In figure 4(a), the maximm variation of o is about 15 per-
cent whereas n varies from -0.05 to 0.3. For most materials, m
increases with ' tv; thus it can be seen from equation (12a) that
m and v affect n in an opposite sense, so that n does not
change much with strein. The value of n for most materials of
any maximum strain 7y, varies from -0.05 to 0.3 (references 12

to 14); only a small part of this veriation is due to the varia-
tion with strain for a given material. The variation of o during
loading is expected to be very smell for most materlals; conse-
quently the deformation theory of plasticity is applicable to this
problem within engineering accuracy.

The values of 0./T, Og/r, €./r, and €gfr are calculated

from equations (7a) and (8a) for the range of o considered and
are given in table ITII. The distributions of principal stresses
and strains are obtained by the partly linearized solution for the
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cases of T, = 0.3000 for Inconel X and 7y, = 0.4400 for 16-25-6.

These results are plotted in figure 6. The results obtained by
the exact solution are also plotted for comparison. The examples
with To = 0.3000 for Incomnel X and Yo = 0.4400 for 16-25-6, with

the values of n equal to 0.15 and ~0.05, respectively, are
chosen because they give the largest deviation of the examples con-
sidered between the partly linearized and exact solutions in curves
of a and ‘r/ro against r/b. For 71, = 0.3000, Inconel X,

n is equal to 0.15 and the values of ao and T/To corresponding

to different values of r/b can be obtained from tsble I by lin-
ear interpolation. In figure 6, the principal stress and strain
distributions obtained by the partly linearized solution are shown
to agree very well with those obbtained by the exact solution, even
for these tuo cases that have the largest deviation of the varia-
tions of o and r/ro with r/b between the two solutions. For

the rest of the cases, the a and Y/v, curves obtained by the

two solutions are epproximately the same; therefore the distribu-
tions of principal stresses and strains will also be practically
the same.

The variations of o and v/r, with r/b obtained by the

approximate solution are the same as those for the case of n =0
in figure 4. The principal strains obtained by the approximate
solution and the exact solution are plotted in figures 7(a) and
7(b) for 16-25-6 and Inconel X, respectively. The stress distri-
butions obtained by these two solutions are plotted in figures 7(c)
and 7(d) for 16-25-6 and Inconel X, respectively. The stresses
and the strains obtained by the approximate solution give fairly
good results. '

The variations of o, T/r,, €g/{eg),, and ¢ /(e.), with
radius for ideally plastic material are the same as those obtained

by the approximate method. The principal stresses for the ideally
plastic material with Yo equal to 0.4400 and 0.3000 are also cal-

culated. In this case, T 1is constant and is chosen equel to the
TO for which the solutions are being compared. These distribu-

tions of principal stresses along the radius as well as those
obtained by the partly linearized, exact, and spproximate solutions
are plotted in figures 8(a) and 8(b) for the case of 71, = 0.4400

for 16-25-6, and 1, = 0.3000 for Inconel X, respectively, for com-

parison. It is seen from these figures that the stresses (espec-
1ally the tangential stress, which is the most important part of
the solution) obtained by the ideally plastic material are not good
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enough to represent the actual results. The curves obtained by
the three other methods agree very well. These results also indi-
cate, as in the case of the thin plate with a circular hole (ref-
erence 6) that the ratios of strains along the radius to the maxi-
mum velue and the ratio of the principal stresses are essentially
independent of the 7(y) curve of the material and the maximum
strain of the disk, but that the stresses are very much dependent
on the material. The conclusions obbtained in reference 5 for the
problem of the rotating disk (with body force) of Inconel X and
16-25-6 are then extended to most materials.

The rotating-speed function p(a)b)2 is calculated from equa-
tion (15) by using the values of o5 and ¢g obtained in the

partly linearized solution for Inconel X and 16-25-6. These values

of p(cob)z and those obtained from the exact solution are plotted
against To in figure 9. The loads obtained by these two methods

are practically the same (the two curves coincide). The relations
between the approximate value of p{uwb) / T. and Yo Tor several

values of m are calculated from equ %ion (17) and plotted in fig-
ure 10. The variations of load p{wb)® with v, for Inconel X

and 16-25-6 sre obtained from figure 10 and are plotted in fig-
ure 9 for comparison. The values obtained by the approximate sol-
ution are also very close to the values obta.ined. by the exact
solution. The percentage deviatlon of p(cnb) of the approximate
solution from the exact solution is much less than the percentage
deviation of tangential stress and strain. This can be explained

by the fact that ;:;(a)b)2 (equation (15)) increases with increas-
ing value of o0g but decreases with increasing value of €g5
values of 0y and € e obtained by the approximate solution

(fig. 7) differ from those of the exact solution in the same
direction; hence the part of error cancels. The percentage devia-
tions of radial stress and strain in some cases are quite large,
but fortunately these quantities do not enter in the calculation
of p{wb)

Use 1s made of figure 10 to calculate p(a)'b)2 Prom the tensile
stress-strain curve of the same materials as the solid disks con-
sidered in reference 4. (In this reference, data were obtained
for disks that showed no imperfections upon X-ray and surface
inspection and for disks in which defects did exist. For the
present purposes, only the disks having no defects were considered.)
From the load-elongation curve, original diameter, final diameter,
and fracture load in tension, which data were obtained at this leb-
oratory for the work reported in reference 4, the 7(y) curves of
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these materials were calculated using equations (18) and (18a) and -
are plotted in figure 11 on a logarithmic scale. Six materlals
(SAE 1078 steel of two different heat treatments, beryllium-copper
alloy of three different heat treatments, and one nickel-base
alloy) are considered. For simplicity, these meterisls are herein ~
designated materiels A, B, C, D, E, and F. The values of Ter

and Y¢r Tor these materials are given in table IV; the reduction

in nonnecked diameter, which was used as a parameter in some fig-
ures of reference 4, is also given in table IV in order to corre~
late the results given in reference 4 and herein. (This reduction
in nonnecked diameter is the reduction in dismeter in the region
of uniform strain of the specimen.) In table IV are listed the

values of m and p(mb)z, vhich are calculated by teking v, at

the center of the disk equal to Yy, of the tensile test, except

for material C. Becasuse the load-elongation curves of the tensile

test show that material C has a large necking effect, several val-

ues of p(wb)? for different 1, between T = 0.1342 (the T

at the maximum load of the temsile test) and rg), Wwere calculated

and are given in table V. It can be seen that the calculated

rotating-speed function p(wb)? increases to a maximum at 3
Yo = 0.3 to 0.4 and then decreases. This fact indicates a case

of instabllity of the rotating disk.

The experimentally determined values of p(wb)? are also
given in table IV. The percentage difference of calculated p(ub)?
to the experimentally determined p(u)’b)2 as well as the percentage
difference of calculated ® +to the experimentally determined o
is given in the same table. It can be seen from these values that
the percentage difference in w is small. More relisble calcu-
lated values of p(wb)? may be obtained, however, if: (1) the
T(y) curves obtained from the tensile test are corrected for the
triaxiality and nonuniform stress distribution introduced by neck-
ing, and (2) the T(y) curve of a few tangential tensile specimens
teken at different radii of the disk (including a specimen passing
through the center of the disk) are used, because the meterisl of
the disk is not quite uniform and p(wb)? is a function of €95
Og, and r/b, as shown in equation (15). The calculsted values of

p(cn’b)2 at disk failure are plotted against the experimentally deter-
mined p(wb)? in figure 12. It can be seen that these points are
s8lightly above the 45° straight line. Celculations based on

7(r) curves of tangential tensile specimens may give lower values.
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It should be emphasized that all the results and discussion
are only true for this problem under plastic deformation in the-
strain-hardening range in which the elastic strains are small com-
pared with the plastic strailns and there are neither time and tem-
pergture effects nor unloeding.

~CONCLUSIONS

The results obtained for the rotating disk in the strain-
hardening range, in vwhich the elastic strains are smell compared
with the plastic strains, lead to the following conclusions, which
are similar to those obtained in the case of the thin plate with a
circular hole: ‘

1. The results obtained by the partly linearized solution
agree very well with those obtalned by the exact solution based on
the deformation theory of plasticity. The amount of computation
is greatly reduced by the partial linearization. The stresses and
the strains can'be obtained for any material under any maximum
strain by a simple multiplication using the tdbles or curves given
in this paper.

2. The variation of a parameter, which 1s determined from the
tensile-stress~and-strain curve of the material, can be used as a
simple general criterion of the applicability of deformation the-
ory for this problem.

3. The results previously obtained for Inconel X and 16-25-6,
namely, the variation of the ratio of the principal stresses with
radius and the ratios of the strain along the radius to their maxi-
mum value are essentially independent of the octahedral shear
stress-strain relation of the material but thet the distributions
of the stresses depend very much on the materlal, are extended

‘to most materials.

4., Results obtained for the ideally plastic material with the
Infinitesimel strain concept give good approximate values of prin-
cipal strains but not principal stresses.

5. Sufficiently accurste values of principal stresses can be
obtained by an approximate method in which the stresses are cal-
culated by using the strains obtained from the ideally plastic
meterial together with the actuel octahedral shear stress-strain
relation of the material.

25
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6. The rotabting speeds of the disk obtained by the partly lin-
egrized solution are practically the same as those obtained by the
exact solution; and those obtained by the approximate solution, in
which the rotating speeds are determined directly from the tensile
stress-strain curve of the material, are also very close to the
exact value.

7. Good correlation between experimental bursting speed and
the calculated value determined directly from the tensile stress-
strain curve of the material is obtained.

8. If a simple analytical function representing the octahedral
shear stress-strain relgtion is required for analysls, the power-
law approximation can be used.

Lewis Flight Propulsion Lgboratory,
National Advisory Committee for Aeronautics,
Cleveland, Ohio, January 25, 1951.
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TABLE I - VALUES OF I AND G USED IN EQUATIONS (16) AWD (17)

M1
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TABLE II - VARIATION OF o AND 71/v, WITH r/b
FOR VARIOUS VALUES OF n
Q@ n=-0.05 n =0 n = 0.1 n=0.2 n=0.3
r/o |/, | z/fo [ vhg | /o | vy | 2 | vy | /o | v/
1.5708/0.0000|1.0000 [0.0000|1.0000|0.0000{ 1.0000| 0.0000}1.0000{ 0.0000|1.0000
1.5675| .0480| .9850| .0510( .9850| .0600 .9850| .0690| .9850| .0800| .9850
1.5615| .0750{ .9675| .0900] .9675| .1010| .9675| .1140| .9675| .1260| .9675
1.5480| .1170| .9250| .1325{ .9250| .1565| .9250| .1780| .9250| .2050| .9250
1.5300| .1555| .8700| .1780| .8710| .2050| .8730| .2350| .8750| .2720| .8770
1.5045( .2025| .8010| .2250| .8030| .2580| .8060| .2970| .8090| .3380| .8120
1.4820| .2370| .7490} .2600| .7500| .2970| .7550| .3400| .7590| .3840| .7630
1.4490| .2820| .6780| .3050| .6820| .3475| .6880| .3930| .6920| .4400| .6960
1.4105| .3280{ .6100| .3510| .6150| .3975| .6210| .4420{ .6280| .4910| .6350
1.3670( .3775| .5420| .4000| .5490| .4460| .5580| .4920| .5675| .5410| .5760
1.3180| .4280| .4790| .4505| .4875| .4950| .4995| .5400| .5120| .5900| .5210
1.2635| .4820| .4200| .5025| .4295| .5450( .4450{ .5890| .4575| .6370| .4710
1.2045| .5350| .3690| .5540| .3790| .5940| .3950| .6360| .4120| .6800| .4250
1.1400| .5880| .3230| .6060| .3345| .6440( .3520| .6830| .3695| .7230| .3850
1.0705| .6440| .2840| .6600| .2950| .6930| .3145| .7290| .3325| .7650| .3500
.9965| .7000| .2505| .7150| .2610| .7440{ .2820| .7730| .3000| .8050| .3175
.9175| .7575{ .2220| .7700| .2330{ .7930{ .2525| .8170| .2720| .8440| .2915
.8330| .8140| .1975| .8240| .2075| .8420] .2280| .8610| .2480| .8820{ .2690
.7430| .8710| .1760| .8780| .1870| .8920] .2070| .o040| .2270| .9180| .2490
.6465| .9290| .1590| .9330| .1690{ .9410| .1900f .9490| .2100| .9560| .2310
.5236|1.0000| .1430 |1.0000] ..1520{1.0000] .1720}1.0000{ .1930{1.0000| .2150
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TABLE III - VALUES OF o fr, o,/7, €./v, AND ¢y/y

FOR CORRESPONDING VALUE OF a

a cr/'r ce/'r €./r <ofY
1.5708 | 2.1213 | 2.1213) 0.3536 | 0.3536
1.5875 12.11721 2.1253}1 .3515 .3556
1.5615 | 2.1098 | 2.1326 .3478 .3592
1.5480 | 2.0929 | 2.1487 .3395 .3674
1.5300 | 2.08696 |'2.1695 .3283 .3782
1.5045 | 2.0355 | 2.1978} . .3122 .3933
1.4820 | 2.0044 | 2.2216 |- .2979 40865
1.4490 ]1.9568 | 2.2544 .2765 4253
1.4105 ]1..8986 ) 2.2896 .2513 4468
1.3670 11.8295 | 2.3253 .2223 .4702
1.3180 {1.7476 | 2.3602 .1892 .4955
1.26835 }1.6515 | 2.3924 .1518 .5222
1.2045 11..5419 | 2.4192 .1108 5494
1..1400 [1.4160 | 2.4389 .0655 5770
1.0705 |1.2738 | 2.4488 .0165 .6040

L9965 | 1.1157 | 2.4463 | -.0358 .6295

9175 .9401 | 2.4288 | ~-.0915 .6530

.8330 .7458 1 2.3935 | -.1503 6735

L7430 .5331 | 2.3370 | -.2118 .6902

.6465 3003 (2.2555 1 -.2758 . 7018

.5236 0000 (2.1213 | -.3536 L7071

“Hﬂﬁg”’
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TABLE IV - DISK MATERTALS, TENSILE-TEST PROPERTIES, CALCULATED AND EXPERTMENTALLY

DETERMINED BURST SPEEDS CF ROTATING DISK

Burst apeead
Tensile-test properties Calculeted from Experimehtally Difference | Differenca
tensile T(1) curve debermined of calcu- of calcu-
2 lated to lated to
Material®|Reduction inf T T n o(ab)2h | Calculated| Aversge p(wb) erimental |exporimental
nonnaecked, fr tr (in range P ° o {ab) calculated e . .2 exp e
dlemetar of o - 2 plwn} @
fig. 10 p(ab)
) percent) {percent)
{percent) Ter (/%) (
to Yep)
Steel,
SAE 1078 5 - 3 .
A 2.0 68,900 0.1237 Q.186 5.61 386 X 10 IB2.5% 10D 381.5 x 10 0.26 0.13
65,800| .0887 .170 5.77 379
B 2.5 52,500} .1298 155 5.75 301 309 289.1 6.54 3.22
58,000| .2133 173 5.47 517 292.8 5.19 2.56
Beryllium
copper
C 8.0 78,120| .8224 .192 4.15 324 310.2 4,51 2.16
D 9.0 78,300[1.5580 413 2.72 212 206.2 2.81 1.40
E 16.9 | 76,000]1.3570 480 2.80 197.5 191 .4 3.19 1.57
Nickel-
base
alloy
F 8.2 94,700|0.2957 305 4.76 &30 445 4335.9 2.56 1.34
89,500| ,2538 . 294 4,92 440 428,82 3.92 2.02

87yo Aifferemt heat tremtmants for SAE 1078 and three different heat trestments for beryllium-copper alloy.

L9982 BIL VOVH

e
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TABLE V - RELATION BETWEEN ROTATING SPEED p(a)'b)z

AND MAXTHMUM OCTAHEDRAT. SHEAR STRAIN AT CENTER

OF DISK FOR MATERTAL C (BERYLLIUM-COPPER)

To To m el (cnb)z/‘r o Calculated
from fig. 10{ p(wb)?
0.1342| 54,560 | 0.092 6.04 330 x 10°
.2000| 58,000 | .112 5.80 336
.3000| 62,800 .152 5.38 337
.4000 | 66,200 | .162 5.10 337
.5000| 69,800 | .185 4.81 336
.8224 | 78,120 | .192 4.15 324

W
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(a) Rotating disk.

(c¢) Sector.
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Figure 1. - Rotating disk, an element, and a sector in deformed state.
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Natural octahedral shear strain, v
(b) Logrithmic scale plot.
Figure 2. - Octahedral shear stress-strailn curves.
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